学校主页| 联系我们
 
师资队伍
 师资概况 
 教学团队 
 博士风采 
 外聘专家 

李志强
2023-09-14 17:24 作者: 编辑:刘慧芳    (点击: )


一、个人简介

李志强,男,1981年生,山西吕梁临县人,博士,讲师。2021年毕业于上海大学,获理学博士学位。主要从事分数阶(偏)微分方程的理论分析与数值计算。

电子邮箱:lizhiqiang0914@126.com

通讯地址:山西省吕梁市学院路1号,吕梁学院数学系

办公室:实验楼1二层连廊216室

二、教育经历

2018.09-2021.07,上海大学,计算数学(分数阶偏微分方程数值解),博士

2009.09-2012.07,首都师范大学,基础数学(多复变函数论),硕士

2005.03-2006.12,太原师范学院,数学与应用数学,学士

三、工作经历

2013.09-至今,吕梁学院,数学系,助教、讲师

2015.09-2016.03,英国切斯特大学,数学系,访问学者

2001.09-2013.09,吕梁市临县碛口镇中心校,小学教师

四、教学

主要讲授数学系本科生专业课《复变函数》、《实变函数》、《泛函分析》;非数学专业公共课《高等数学》、《线性代数》、《概率统计》、《复变函数与积分变换》

五、荣誉和奖项

2023年度吕梁学院十佳科研标兵

2020年度吕梁学院科研工作优秀论文二等奖

六、科研项目

1.山西省教育厅高等学校科技创新项目,非线性时空分数阶扩散方程解的爆破,2021.09-2023.09,2万元,在研,主持

2.吕梁市引进高层次科技人才重点研发项目,土壤污染物扩散的分数阶建模与高性能计算研究,2022.10-2024.10,10万元,在研,主持

3.山西省科技厅面上项目,锂电池分数阶相场模型的分析与计算,2022.01-2024.12,9万元,在研,参与

4.山西省科技厅面上项目,时间分数阶扩散方程高精度数值算法,2018.12-2020.12,5万元,结题,参与

5.山西省高等学校大学生创新创业训练项目,Riemann-Liouville型时空分数阶发展方程解的渐进性研究,2022.06-2023.06,0.6万元,结题,指导教师

七、学术兼职

《Fractional Calculus and Applied Analysis》、《Mathematics and Computers in Simulation》、《Communications on Applied Mathematics and Computation》等期刊的审稿人

八、学术报告

1.山西省数学年会分组报告,时空分数阶扩散方程解的渐近性和爆破,2023-08-26至2023-08-28

2.山西省数学年会分组报告,时间分数阶偏微分方程的高阶差分格式,

2017-05-05至2017-05-07

九、学术论文

[1]Zhiqiang Li, Yanzhe Fan, On asymptotics of solutions for superdiffusion and subdiffusion equations with the Riemann-Liouville fractional derivative,AIMS Mathematics,2023,8(8):19210-19239.

[2] Enyu Fan, Changpin Li, Zhiqiang Li, Numerical methods for the Caputo-type fractional derivative with an exponential kermel,Journal of Applied Analysis and Computation,2023,13(1):376-423.

[3] Changpin Li, Zhiqiang Li, Stability and Psi-algebraic decay of the solution to Psi-fractional differential system. International Journal of Nonlinear Science and Numerical Simulation,2023,24(2):695-733.

[4] Changpin Li, Zhiqiang Li, The finite-time blow-up for semilinear fractional diffusion equations with time Psi-Caputo derivative, Journal of Nonlinear Science, 2022,32(6):82.

[5] Jinping Yang, Zhiqiang Li, Blowup for semilinear fractional diffusion system with Caputo-Hadamard derivative. Mathematical Methods in the Applied Sciences,2022,45(17):10861-10876.

[6] Changpin Li, Zhiqiang Li, On blow-up for a time–space fractional partial differential equation with exponential kernel in temporal derivative, Journal of Mathematical Sciences, 2022,266(3):381-394.

[7] Changpin Li, Zhiqiang Li, Chuntao Yin, Which kind of fractional partial differential equations has solution with exponential asymptotics? In:Dzielinski, A., Sierociuk, D., Ostalczyk, P. (eds) Proceedings of the International Conference on Fractional Differentiation and its Applications (ICFDA’21).pp.112-117.

[8] Enyu Fan,Changpin Li, Zhiqiang Li,Numerical approaches to Caputo–Hadamard fractional derivatives with applications to long-term integration of fractional differential systems.Communications in Nonlinear Science and Numerical Simulation,2022,106:106096.

[9] Zhiqiang Li,The finite time blow-up for Caputo-Hadamard fractional diffusion equation involving nonlinear memory.AIMS Mathematics,2022,

7(7):12913-12934.

[10] Zhiqiang Li, Asymptotics and large time behaviors of fractional evolution equations with temporal Psi-Caputo derivative. Mathematics and Computers in Simulation, 2022,196:210-231.

[11] Changpin Li, Zhiqiang Li, Asymptotic behaviors of solution to Caputo-Hadamard fractional partial differential equation with fractional Laplacian. International Journal of Computer Mathematics, 2021,98: 305-339.

[12] Changpin Li, Zhiqiang Li, Asymptotic behaviors of solution to fractional partial differential equation with Caputo-Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete and Continuous Dynamic Systems Series S, 2021,14:3659-3683.

[13] Changpin Li, Zhiqiang Li, Stability and logarithmic decay of the solutio to Hadamard-type fractional differential equation. Journal of Nonlinear Science, 2021, 31:31.

[14] Changpin Li, Zhiqiang Li, The blow-up and global existence of solution to Caputo-Hadamard fractional partial differential equation with fractional Laplacian. Journal of Nonlinear Science, 2021,31:80.

[15] Changpin Li, Zhiqiang Li, Zhen Wang, Mathematical analysis and the local discontinuous Galerkin method for Caputo-Hadamard fractional partial differential equation. Journal of Scientific Computing, 2020,85:41.

[16] Madihar Gohar, Changpin Li, Zhiqiang Li, Finite difference methods for Caputo-Hadamard fractional differential equations. Mediterranean Journal of Mathematics, 2020,17:194.

[17] Zhiqiang Li, Yubin Yan, Error estimates of high-order numerical methods for solving time fractional partial differential equations. Fractional Calculus and Applied Analysis, 2018,21:746-774.

[18] Zhiqiang Li, Zongqi Liang, Yubin Yan, High-Order numerical methods for solving time fractional partial differential equations. Journal of Scientific Computing, 2017,71:785-803.

[19] Zhiqiang Li, Yubin Yan, Neville J Ford, Error estimates of a high order numerical method for solving linear fractional differential equations. Applied Numerical Mathematics, 2017,114:201-220.

[20] 李志强.时空分数阶波方程解的渐近性与长时间行为.上海大学学报(自然科学版),2021,27(6):1148-1160.

[21] 杨晋平,李志强,闫玉斌.求解Riesz空间分数阶扩散方程的一种新的数值方法.计算数学,2019,41(2):170-190.

[22] 王安,李志强.底空间为对称域的Hartogs域的度量等价.数学学报(中文版),2013,56(6):871-888.

上一条:刘利军
下一条:高星
关闭窗口
 

版权所有:吕梁学院数学与人工智能系  地址:吕梁学院教学楼一区